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1. INTRODUCTION

Monte Carlo studies are experiments that use simulated data. Like
any experiment, they should be designed to minimize extraneous varia-
tion. However the Monte Carlo experimenter, unlike the designer of
traditional field experiments, usually knows and can control the
stochastic structure of the simulated data. "Swindles' or variance
reduction techniques exploit this knowledge to construct more precise
estimates of the unknown parameters or to reduce the number of simula-
tion runs (and thus the cost) necessary to attain some desired level of
precision. Because swindle designs use information that is not usually
available in field experiments, they sometimes appear to provide an
unfair reduction in the variance of estimated quantities (hence their
name). Indeed, the improvement in precision and the attendant reduction
in cost can be so great that a well-designed swindle can make feasible
Monte Carlo studies tha;. might otherwise have been impossible. In
view of this, it is unfortunate that many Monte Carlo studies do not
employ variance reduction methods. This may be due in part to the
relatively restricted applicability of standard swindle methods or to
a8 lack of awareness of the methods.

Perhaps the most common application of Monte Carlo swindles in
statistics has been in estimating variances or mean squared errors. A
simulation study of variances often forms the basis for comparing the
small-sample efficiencies of a collection of, say, robust or resistant
estimators. A typical and traditional question might be "How much more

efficient is a 10% trimmed mean than the sample mean in samples of 20
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from 3 heavy-tailed distribution?” The Princeton Robustness Study

(Andrews et al., 1972) provides a large and well-known example. On a

g smaller scale, such studies are now a roytine part of the scrutiny of

i statistical procedures.

Our principal purpose in this paper is to unify and extend the treat-
3 ment of swindles for estimating variances in the hope that they may then
i be applied more easily and widely. To do this, we (1) propose a new

X swindle (based on Fisher's efficient score function) that is simpler,

more effective, and more general than the current "Gaussian-

over-independent” (G/I) method commonly used in variance estimation,

(2) provide examples of how this swindle can be applied, and (3) describe
how this and other swindles for variances fit into a familiar geometric
framework (which in turn suggests further applications).

Section 3 presents the score function swindle first in the simplest
case: for location equivariant estimators in the location problem with

known scale. Section 4 presents a simple application to the problem of

estimating the variance of the Pitman estimator of location in small )
samples drawn from Student's t distributions (and reports new results 4
for this problem). In Section S we compare the score function swindle s

numerically with the standard Gaussian-over-independent swindle used in R

the Princeton study. We examine the relative swindle gains for the two

methods for a variety of location estimators and distributions in the
t-family, and find that in most cases the score function technique =1
dominates. To facilitate the comparison, Section 2 presents some
general issues in assessing swindle gains, then outlines and discusses fizfg'.;

the Gaussian-over-independent swindle. R .
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. Hammersley and Handscomb (1964) and Rubinstein (1981) discuss

general prinéiples of variance reduction methods, Simon (1976) surveys

applications of swindles to simulation studies in statistical research.

The common swindles for estimating the variance of a statistic

T(Y) exploit a simple variance decomposition

(1.1) var T = Var S + var(T-S) ,

inwhich S and T-S are uncorrelated and Var S is either known from

the distribution of Y or can be easily approximated.

should be highly correlated with T,

. and hence, in general, more precisely estimable.

Ideally S

for then Var(T-S) will be small

A useful way to obtain such

decompositions is to identify an affine subset J of statistics with

finite variance to which T belongs and take S as a minimum variance

element of 5. This is discussed further in Section 6, where it is

shown how both the score-function and G/I swindles and a number of

other swindles discussed in the literature may be obtained by varying

the choices of J. Further applications of swindles based on decomposition

(1.1) to statistical decision theory (frequentist and Bayesian), and of

the score function swindle in particular to multivariate, discrete and

bootstrap location problems are outlined in Section 7.
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The 'regression estimate' of sampling theory (Cochran 1977,
ch. 7) suggests a variance reduction method which in some senses is
simpler and more widely applicable than the above approach. Let 3%
be unbiased for Var T. Suppose there is available another statistic
S , preferably highly correlated with T , for which Var S is
known and possesses an unbiased estimate 3:. Then

2 A2 A2 2
(1.2) Or =0y *+ b(cs - os)

is an unbiased estimate of a.f. for all b, and has smaller variance than 3.;".
for some interval of b values about the optimum b* = - Cov(&é, 3%)/
Var(&é) . However, the optimum b* will rarely be known, and will thus need
to be estimated, introducing a bias to '6.?. . On the other hand, it is
not necessary to have S and T-S uncorrelated for the method to be
applicable as was needed for (1.1). A normal theory calcx;lation in
Remark 8A suggests that the decomposition (1.1), when available, leads
to larger swindle savings than (1.2).

This paper focuses on methods for increasing the precision of
variance estimates, Often comparisons of variance estimates in the

form Var TI/VEr T, or Var T, - var T, are sought and assessments of

2
swindle gains will of course differ in these cases., Without attempting
a systematic discussion, we give in Remark 3B an assessment of the

swindle gains from the variance decomposition (1.1) in the ratio case,

The crude comparison of (1.1) and the 'regression estimate' (1.2)
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* (Remark 8A) can be extended to the case of differences Var T, - Var Ty,
with normal-theory calculations suggesting that (1.1) dominates when the
correlation between S and ‘l‘1 , and between S and 1'2 is fairly

] strong and is of the same order or stronger than the correlation between
T1 and Ty

¢
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2. BACKGROUND

2.1 Measuring Swindle Gains

Suppose that a decomposition (1.1) holds and that Var S is
known. We measure the gain in precision (or equivalently the reduction
in number of experiment replications needed) by comparing Var Vir T
to Var Var(T-S) . '

More specifically, assume that ET(!) = ES(!) = 0 and that naive
method-of-moments estimators are used for Var T and Var(T-S) . For

1 3 1207 .
example, Var T can be estimated by N L (Y") , where J indexes

Jal
replications of the sample ! = (Yl....,Y n) . Then, of course

Var Var T = % Var Tz(p , and from the identity

var T2 = (ETPRETY/ (ETH2 - 11,

we obtain

’ A b
Var Var T 1 ‘em-=-17
(2.1) ) ' L )

Var Var(T-S)  |1-0%(T,S) (T-5) - 1]

Here x(T) = (E T‘)/(E ‘1'2)2 denotes the kurtosis of T, The squared
correlationof T and S, pz(T,S) , equals the relative efficiency

Var S/Var T whenever S is minimum variance in a linear class contain-
ing T, as it will be in our applications (Section 6 has a proof). Thus,
subject to comparability of «x(T) and «(T-S), the efficiency of the

swindle increases quadratically as the squared correlation of T and

S approaches one. Note also that the ratio (2.1) can be interpreted
as the factor NT/N‘I'-S by which the number of replications to achieve

8 desired precision is reduced by using the swindle.
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In measuring swindle gains, one should also assess the relative
costs of computing T and T-S. Since these will typically depend on
the algoritha and the machine, we will not indicate these comparisons

explicitly, However if, for example, S is a Pitman estimator, the

extra effort involved in finding S may be so great as to render the

swindle impractical.

2.2 Gaussian Qver Independent Swindle

This swindle was introduced by Dixon and Tukey (1968) and Relles

(1970) and applied extensively in the Princeton study. To date it has
mainly been used for location problems: Simon (1976) gives a survey
discussion in this setting. We outline it here in a (more general)

E regression setting in which at the same time the method seems more

: natural (cf. also Goodfellow and Martin (1976)). Johnstone and Velleman
. _
(1984) use this (and the score function swindle of Section 3) in a small-

sample comparison of several resistant simple linear regression methods.

Suppose that observations are drawn from a linear model, Y=X8 +¢c

where Y is an nx1 column vector, X is a fixed nxp matrix of
carriers, B a px1 parsmeter vector and € an nx1 vector of i.i.d.
variables Zi/wi drawn from a Gaussian-over-independent distribution; i.e.

Z, N N(O,az), and the wi are i.i.d. positive and independent

i

of Z (Table 1 lists some distributions in the ZI/W family.)

i *
Suppose that T(X,Y) is a regression-invariant estimator of 8:

T(X, cY-Xd) = cT(X,Y) -d forany ce R, d «RP. We seek a

variance decomposition for Var T,
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The denominators, LI constitute extra information available to .
the simulation (but not available in real data when only “1**1) are observed.

Here they can be used to construct an estimator with known variance. Indeed,

2

conditional on ui » B and 0” can be estimated by standard weighted

least squares estimates gw and 6: , the former having covariance

| matrix uz(x‘ A2 x)“ where A = diag(W;) . From the normal theory

h assumptions on Zi and conditional on "i , it follows that (§W’ 53) . j
are complete sufficient statistics for (E, az) , and that the standard- .

g ized residuals § =(y - )(éw)/(fw are ancillary. Basu's sufficiency-

» ancillarity theorem (e.g. Simon 1976, Lehmann 1983 p.46) ensures

E independence of the triple (En' 8,2,, §) . Using the decomposition -

; y= XIZ" + 3G E and regression invariance of 8, we obtain g

T(y) = By + 3,78 .

Suppose also that T is unbiased. (This will happen for example
if regression invariance holds for negative values of c¢ also.) If -
the distribution used to generate the data satisfies 02 =1, 8=0,

then conditional on W, and using independence,

i

ot .
FreY ) —

var (Tl = (X°af 071+ var T M.

S ) .
RIS SV |

Now take expectation with respect to W, and use the fact that

E(T(Z)|!) s 0, B('l'(!)|!) = 0 to obtain finally

)
and

Var T(y) = EQCAZ0"L + var T(®) .

' .
R i PR :'.-" .
a A _» 1 [

.
PR

A
[SRPLPEPETY NN

S T U T e




-
. i '-
.
. '-.

-9-

In many cases, the first term can be evaluated analytically,
numerically, or once-and-for-all by Monte Carlo, while Var T(e) ,
being smaller than Var T(y), can,in principle,be estimated more accu-

rately (c.f. equation (2.1)).

2.3 Limitations of the Z/W Swindle

The Gaussian-over-independent swindle depends crucially on the
Z/W representation for the distribution of the underlying data. While
the class of distribution that arise as variance mixtures of normals is
rich (see, for example, Andrews and Mallows, 1974 and Efron and Olshen
1978), it is only i subset of the symmetric distribtuions. Even within
this subset the gains realized from the swindle tend to decrease for
Z/W distributions with heavy tails.

This phenomenon can be accounted for in part by restrictions on
the first term in the swindle gain (2.1). Heavy tailed Z/W distribu-
tions must have some Ni far from unity. Knowledge'of W will then
convey more information about the sample, leading the variance of gw
to fall further below the smallest attainable variance. This bounds
o%(T, By (= Var f/Var ) away from 1.0.

Figure 1 illustrates this effect for Student's t distributions
(for which L xﬁ/v ). The Pitman variances in Figure 1 are the
smallest attainable among invariant estimators of location. All other
estimators would thus appear above the Pitman values. (See Appendix A
for the Pitman variances and notes on how they were estimated.)

While we might ideally wish to swindle relative to the Pitman

estimators (see, e.g. Andrews et. al., 1972, p. 61 and Section 5 below),

-
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the expense of computing them Qould cancel much of the swindle gain.
However, as Figure 1 shows, often the Pitman efficiency is not far from
the Cramer-Rao bound. This fact motivates the method of the next
section, in which "estimators"” with variance equal to the Cramer-Rao
bound are used to obtain higher correlation with T(y) while still

possessing a variance decomposition,
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g 3.  THE SCORE FUNCTION SWINDLE

. Suppose now that YiseeeY, are independent random variables and
- that Y, has density £,(r,8), 8 ¢® c RP. (Often the f, will be

i
identical). We shall assume that the densities fi are smooth enough

to permit the manipulations below (the "Cramer conditions' (Cramer, 1946)

would more than suffice). Suppose that T(Y) is unbiased for 81 , at

least up to a constant:

86e O .,

hl 59 T(!) = e1 + co ’ o

Given an arbitrary vector-valued statistic S, the linear combination

E'S having maximm correlation with T is just the (population)

linear regressionof T on S, c* = t;l Jrg» Where tS = Cov(S) and

Irs * Cov(T,S) . The resulting variance decomposition is

Var T = 0rc t;l Opg * Var(T-c* 8) .

In general Irs will be no easier to estimate than Var S.

n
However, the score function, S(Y,8) = ¥ g%-log f(yi, 8) provides a

statistic § for which Irs is simple, and yields a random vector
with high (multiple) correlation with T when T has variance close

to the Cramer-Rao lower bound., To see this, differentiate the relation

E6 T(X) = 61 + c0 to obtain

-~
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1
Recalling that Ee Sk(!, g) = 0, we find by fixing € at the value
(say _9_0) used in generating the data that S = S(!, eo) is a o]
"statistic' with the property s "% " (1,0,...,0), and hence
» =1 PRFES |
(3.1) Var T = e} ts e, *+ Var(T-e] ts $) .

Since ts depends only on the densities £, it is, in principle, known

i
or calculable, and the Monte Carlo can be restricted to estimation of

- =1

Remarks: a) This approach can be extended by taking higher derivatives of

the likelihood function. We discuss in Remark 7C the amount gained by

the more refined swindles that result,

b) Some proposals for the use of score functions and Cramer-Rao

bounds are discussed in the setting of simultaneous simulation of two o

variances in Appendix B of Andrews et al. (1972). '_:ﬁ'-f_f:

les , - R

1) Location. Let Yi have density f(y-8) for f positive and ;.:jzf'j-'
piecewise C1 on R. Let T(Y) be a location equivariant estimator:

’l‘(Y'1 +c,...,Yn +C) = T(X) +C¢, Then clearly EeT(X) s Qe o where

ad kb
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n
where c, = E(T(Y) and 8, =0, S = - 1{ £°/£(Y;) and ts =n I(f),

the Fisher information (for location) of the density f£. Thus we

have the decomposition

(3.2) Var T(Y) = 1/(nI(£)) + Var T(Y - §(1)1)

where .9'(!) = (nI(f))']'S . Thus if one knows both f'/f and

I(f) = E(f'/f)2 , then the swindle simply bases the Monte Carlo estima-
tor on the data ! centered by 5(!) . Note that S is not in general
a location-equivariant estimator itself (in fact it will be if, and only
if, £ is Gaussian!), but this is irrelevant to the swindle calculation.
Significantly, there is no need for f to be symmetric.

The score function swindle includes situations in which the data
arenot an i.i.d. sample. A common example is the '‘one-wild" sampling
scheme in location problems (Andrews et.al., 1972; Hoaglin, Mosteller
and Tukey, 1983, Chs. 10,11) in which n -1 observations are drawn
from f£(y) and one from (1/00) f()_'/co) for O, known and large. The
score function S(Y,0)=-4(y,/0)/cy = £ 6(y,) and t¢=(n-le03) 1(H).

Suppose now that £ includes scale as a nuisance parameter, Yi

having densicy f(y-;-E) . Now & = (u,0) and if T(Y) is a location
and scale equivariant estimator of u then EeT(Y) = U+C Eo 1‘1'(1) R

where 8§, = (0,1)). Hers the score function S = (2? ¢(Y;), z;’ Y, o(Y),

where ¢(y) = -£°/£(y) , and
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Ev?¢?
Y2 e2-(EY ¢D)°

1
Thus, Var T.(Y) = =
1t~ n5¢2£

(3.3) svar T(Y - o 85l S D .

In general, one would expect that as the number of nuisance
parameters increases and the unbiasedness condition becomes more strin-
gent, the Cramer-Rao variance bound -- the first item in (3.1) -- would
increase, thus giving a better swindle. For example, if f£(y) = ce¥ I{y<0}+
ce"’z/ 2 1{y20} , the Cramer-Rao bound is easily calculated to be 1.SI6 .
times the bound obtained in (3.1) without the nuisance parameter for
scale.

Note, however, that if £ is symmetric about 0, then E Y6X(Y) =0 Co.
and the above decomposition reduces to (3.2), so that the swindle does
not gain by including the scale parameter. This is an instance of a
more general phenomenon: if the orginal estimation problem for 91
satisfies Stein's necessary condition for adaptation, then the swindle
cannot be improved by adding a finite number of nuisance parameters to

the model. In the present context, Stein's condition simply requires

that Cov(sl, Sk) =0 for k22 where (SI’SZ""’SR) is the score
function vector for the augmented model. For more information on :ﬁ‘_,_j.;
adaptive (asymptotic) estimation see Stein (1956), Bickel (1982).

2) Regression. For simplicity we discuss here only estimation of
slope in simple linear regression, though the ideas generalize to
arbitrary linear models., Suppose then that we draw n observations

from the model Y, =a -+ B(xi-'x') *e where the x, are fixed and
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€, are i.i.d. sccording to some smooth positive density £, (If f

i
is symmetric, we would gsin nothing by including a nuisance parameter

for scale). Suppose that 'l‘(!) is a regression-invariant estimator of
B: T(y-b(x-F)= T(y) - b. In previous notation, § = (8,a),

8 = (0,0) , S = -(L(x, ~M 6(r;,), I] 6(r;)), and because the x,

n
are centered, Cov S = diag(n ai I(f), nI(f)), where ai a %Z(xi-f}z .
N 1

Thus e tlsa=-n o';‘; {0 t';(xi -%) ¢(y;) , which in the special
-~ s ~
case ¢; Vv N(0,1) 1is just the least squares estimate of B . Finally

31 t;l g, =(n ail(f)l'l . The swindle has obvious extensions to
heteroscedastic situations in which, say, Var(e) varies with x, or
to cases in which the X; themselves are a random sample from a distri-
bution., This method was used extensively in the regression study of
Johnston_e and Velleman (1984).

3) Scale estimation. If S(Yl,...,Y“) is a scale-equivariant
estimate: S(ch,...,cYn) = csq) and the Yi. are i.,i.d. from a

density f£(y/o) with location known, then E, log S(Y) = logo +
E, log S(Y) and log S(Y) is unbiased (up to a constant) for log .

Now it is often argued that Var log(z) is an informative mea-
sure of performance of S(Y) (see e.g. Simon, 1976, §5). To apply the
location score function swindle, set o' = log o and let p(y, 3') =

n
£(y ,-a') . The score function evaluated for a; = 0 equals - L y £'/£(y;)
1

and the variance decomposition becomes




1

Var log S(!) - -—g-_z;}(—y)
nky

| £, o0t
+ Var {log SQ_’) + m .
n

If location is treated as a nuisance parameter, the above analysis can

be modified along the lines of the second part of Example 1.

4) Exponential Regression Models. Suppose that Tl""’Tn are

(positive) survival times with associated (scalar, for convenience)

covariates Zisesesd and exponential hazard rate

n

A(z,t) = exp(z8) .

An appropriate notion of equivariance for an estimator E(zl,...,zn;

tl""’tn? of B |is

(3.4) B(z; "2 t) =B(z,t) -Y, YeR

where e'2Z t denotes (eYzl t ean t) This is, for e 1
~- 1,.00, n . » Xﬂ.mpﬁ,

satisfied by the MLE, which solves the likelihood equation

n Bzi
E zi(l -e ti) =0 .,

B % N .
o S e I S -
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it follows for any estimator § satisfying (3.4), that for fixed z, e
b

Eq E(g,p =c, + 8 and hence from (3.1)

(3.5) Var, f = Var; S + Vary(8-5) £

4

where S = (I 271 rz(1-¢, %) and Vars = (g 2t -

.i Extension to arbitrary (but known) baseline hazard rate is ;.;j
g straightforward but perhaps restrictive: if A(z,t) = e(t)ezs , t>0 ;f %

for 8 >0 known and ©(t) = I‘ 8(s) ds, then (3.5) remains valid
0

Ei for estimators @ (such as the MLE) which satisfy B(z, 3"1(e"2 e(e))) =
B(z,t) -y , if t, in the definition of S is replaced by CICH I
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4. AN EXAMPLE: PITMAN: VARIANCES

This section illustrates the use of the score function swindle in
a simple but instructive situation: the computation of the variances
of the Pitman estimators of location under sampling from distributions
in the t(v) -family . The Pitman estimator of location & based on
n i.,i.d. observations from a density £(x-0) on R (see (4.1)
below) has minimum variance amongst all location equivariant estimators
(Pitman, 1939). It is thus a natural baseline against which to measure
the relative efficiencies of other location-equivariant estimators.
In general, however, the variances of Pitman estimators cannot be
evaluated analytically. Hoaglin (1975) reports on numerical evaluations
of Pitman variances for selected small sample sizes from three particular

distributions (including the Cauchy, or t(l))' For the ¢t family

v)
used in our swindle comparison experiments in Section 5, no other
estimates of Pitman variances seem to be available in the literature.
Our Monte Carlo trials to obtain the Pitman variances are in
principle a straightforward application of the score-function swindle
in the form (3.2). In fact, (1.1) and (2.1) revesl that we are in the
situation where this swindle is most effective: since the Pitman
estimator is the minimm variance location estimator, it has maximm

possible correlation (among location estimators) with the score function

statistic, whose variance is much more readily evaluated.

The Pitman estimator of 6 based on n observations from the

t ) distribution is given by

: n
“.n 4 .je L f\,(yi-@nae/[rr;'_1 £,(y; -0)d8 .
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: vhere £ () = t‘-,l.(hyz/v)'("“1)’z and The

c = rc!ila/r(v/z)fﬁv .

v
score function and Fisher information are

S = !:2
n

v+l
Icfv) RV

P i
1. 72 ves °

V*Xi

Thus it is only necessary to estimate the variance of dp when
applied to samples after centering at S, and then to add this to
1+ 2/(vel) to obtain an estimate of the Pitman variance.

The following section (especially Table 3) documents the dramatic
increase in precision (in terms of sampling variability) of these

variance estimates over those obtained by the standard G/I swindle.

TABLE 2

VARIANCES OF THE PITMAN ESTIMATES OF
LOCATION FOR SMALL SAMPLES FROM
STUDENT'S t POPULATION

Variance (standard error in units of last reported
decimal place)

* 2000 replications
+ 1000 replications

10* 20t a0t
t .2624 49) 187 1 0536 o)
t, 185514, 0880 o 0428
t, +1460 0716 4 4 0354 4 3)
tg 12384, 0616 4 o) :0306 5 o7)
te 112204 o 0560 6 43 :0280 4 535
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5. A NUMERICAL COMPARISON

The performance of variance decomposition swindles depends on the
three measures in equation (2.1): (i) pz , the squared correlation between
the statistic T and the control S ; (11) xk(T), the kurtosis of
the sampling distribution of T on samples of size n from the under-
lying distribution of the data, F; and (iii) «(T-S), the kurtosis of
the sampling distribution of T-$S (or equivalently, of T applied to
the residuals after removing S). These values depend on T, on S,
on the underlying distribution F , and on the sample size, n . We

describe the results of a simulation comparison of the score function

and Gaussian-over-independent swindles in selected location problems.

5.1. Correlation Term

We have previously noted that the' relative size of Pitman,
Cramer-Rao and optimal weighted least squares variances limits the
maximum possible correlation between T and the control S . However,
the behavior depicted in Figure 1 is itself dependent on sample size.
Figure 2 shows the effect of sample size on the Pitman, Cramer-Rao, and
optimal weighted least squares variances for Cauchy data. The score

function swindle offers relatively little advantage in samples smaller

than 10, but substantial advantages in samples larger than 20 where the 1
computational effort needed for the naive variance estimates is of _
course much greater. (The advantages will generally also be greater ‘3

for less extreme distributions.) ‘:.t}f

T

e

R

T

1

....... o T
= e e e - R A - cacaesaala el an _-_L_-_._.--_.;.A...hl‘;;m.._._.-AAAyL__‘L.,.__;J




. -21-

We emphasize that the variance decomposition swindles will
generally perform better when applied to more efficient statistics.

Thus for the same computing expense we will learn more about the better

. performing (and thus usually more interesting) statistics. This

phenomenon was used to advantage in estimating the Pitman variances of

the previous section.

5.2. Kurtosis Terms

The kurtosis ratio that forms the second factor in equation (2.1)
makes it desirable that the kurtosis of (T-S) not be substantially

greater than the kurtosis of T. Often T will be asymptotically
normal and even its small-sample sampling distribution will be very

nearly normal. (This is true, for example, of many robust estimators
of location or regression even at very heavy-tailed densities.)
Unfortunately, the sampling distribution of (T-S) can be very lepto-
kurtic. In general, the kurtosis of (T-S) tends to be higher when
T and S are highly correlated (thus counteracting the advantage of
the high correlation somewhat), when the underlying density is itself
leptokurtic, and when the sample size is small, We have no good way to
predict the kurtosis ratio, however we have estimated it in Monte Carlo
experiments by accumulating IT' as well as I(T-5)%.

The degradation of variance estimates for leptokurtic densities
is well known, (See, for example, Yule and Kendall 1950, p. 443.)
Briefly, the more extreme instances provide much of the information
about the variance, thus reducing the effective sample size. In the
swindle, when var(T-S) is very small, a few extraordinary samples

with large (T-S) can dominate the variance estimate.

......................................




22 1

S$.3 Performance

- Table 3 susmarizes the performance of these varisnce decomposi- j
? A tion swindles in a variety of situations. For location estimators the i;i
!I swindle gains are smallest for the most extreme population distributions 7
- (i.e., t on small degrees of freedom) and increase as the distributions l:,;
L approach the Gaussian. The larger swindle gains reflect high efficien- _ i

cies of particular estimators at particular distributions. Figure 3

adds swindle gain information to Figure 1. The dependence of swindle S

gain on efficiency can be seen especially clearly at t,.

Only rarely in these trials was the Gaussian-over-Independent
swindle more effective than the score function swindle. Usually the
latter was 10 to 50 times more effective.

The larger swindle gains deliver results with precision simply
not obtainable by naive methods. A typical trial of 1000 replications
required over 100 seconds of CPU time on an IBM 370/168. In the most
extreme case (5% trimmed mean for samples of 40 from t16) naive
methods would have required over 15 CPU days of computing time for

equivalent precision. The results for the Pitman variance in the same

situation would have required 158 CPU days. Of course these last

figures should not be taken too literally, as other sources of error
(numerical, rounding) have not been assessed., What is clear is that T
sampling variability can be substantially reduced (or even effectively j

eliminated in efficient cases). S

Although the G/I method does not apply to asymmetric densities,
the score function swindle does. Trials on the rather extreme ahsolute
Cauchy distribution yielded swindle gains of up to 20 in samples of 40
and up to 10 in samples of 20.

da ik
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6. A SIMPLE FRAMEWORK

The simple geometrical setting given here provides a way to think

about swindles for variances that can suggest new applications -- includ-

ing some of these discussed in Section 7. The result (6.1) below
is standard in estimation theory (Rao, 1973, Lehmann, 1983) but its
role in Monte-Carlo studies is explicitly noted in unpublished lecture
notes of Charles Stein. )

Suppose that T(X) belongs to an affine sdbset o (translate 6f
a linear subspace) of the class of all estimators having finite variance
under the distribution Po generating the data. Suppose also that

S(Y) 1is the best (minimum variance) estimator belonging to J ., Then a

version of Pythagoras' theorem gives the variance decomposition

(6.1) " var, T = var, S + var (T-5) .,
Py Po Po
One way to see this is to note that since J is affine, S +e(T-8)
lies in J for each e, so that var, (S+e(T-S)) is minimized at
0
€20, Differentiation shows that S and T-S are uncorrelated,
which amounts to (6.1). We note in passing that expanding var, (T-S)
0

shows that 92(1,5) = Var S/Var T, as remarked in Section 2.1.
The usefulness of (6.1) hinges on the choice of J since as 3

increases, varp S decrezases. Recall that we want varp S to be
0 0

both known (or easily calculated) and large. We illustrate this first
by seeing how a number of swindles in the literature on location esti-

mation fit into this framework.
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Suppose that the data, Y, consists of n i.i.d. observations
from a density f(y-8) on R. Reasonable estimators, T, of 6 are
(at least) location equivariant, so to estimate the variance of T,

with no loss of generality choose Po above to correspond to 9 = 0.

(i) (Stein) a) Let T be the class of all uhbiased location

equivariant estimators. Then S is the Pitman estimator

s(y) = fe 7 £(y; - 8) de/fn’l' £(y, -0) do .

Typically, var S is not known analytically and must also be estimated

(see Appendix A for discussion). An estimator suggested by Stein is

. N N
J=i - 1

th

Here the superscript J refers to the J replication of the i.i.d.

sample (Yl,...,Yn) from Po , and VCJ) to a maximal invariant

8 2O v L vy | me right side of (6.2) is the condi-

tional expectation of the naive estimate 1/N Z?(TGJ))Z given

!(1),...,!(N) , %0 var T is certainly a more precise (i.e., lower
variance) estimate of var T than the naive one., Of course, a (uni-

variate) numerical integration is needed to compute each SGJ) and

E[(S(J))ZIV(J)] , but these can then be used repeatedly in estimating

the variances of many equivariant estimators.

b) The same program is possible if J is restricted to the class
of location and scale equivariant estimators, with the Pitman location -
scale estimator serving as the ''control function" S . Of course,

bivariate numerical integrations are now necessary.

.........
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(ii) ('l‘akeuchi, 1971) T = unbiased linear combinations of order
statistics Y(i.) with weights c, (not necessarily positive) summing

to 1. Then S(Y) =ZcjYy,, where c*= t;‘yq‘;;‘p and
tf,ij = covf(Y(i), Y(j)) . Thus, once tf is known, both S and

var S are readily computable.

(iii) Gaussian over independent swindle, (Andrews et. al., 1972;

Hodges, 1967). A special assumption on f is needed, namely that the
observations Yi , as in Section 2, have the form Yi. -8 H zi./"i.

where Zi'b N(0,1) and "i is independent of Zi. Now J 1is the

class of unl;iased location-scale equivariant estimators. Here the

variance decomposition is performed conditional on (wl,...,wn) , SO
the problem of estimating © ‘becomes that of estimating the slope in
the normal theory regression model ?i = wixi = eni + Zi. , where the
"i are known but the zi are not. The definition T(!,i) aT(?I/wl,
....7n/Wn) associates a slope estimator T in the regression model

with T € J; further, since T is location-scale equivariant, T is

regression equivariant (in the sense of Section 2) and unbiased for 6.

To apply the decomposition (6.1), let S(W,Y) = I wi?i/zwf be the

minimum variance unbiased estimator of 8. Thus conditional on W,

VarT-Var?--Lz + var(¥-9) .

LY

Finally, since E(T|W) = 0 under & = 0, take expectations over W

to express the unconditional variance of T as

-

-t

.4

: v
N U 4
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Var T = r-:ou/zwf) + E, 1'2(xi -5) .

(In fact, the second term on the right can be further decomposed
slightly by exploiting the independence of the normal theory mean and
variance estimators (cf. Simon, 1976), but the extra improvement in

precision that results in small relative to that to that obtained here.)

(iv) The score function swindle. Define T to be locally

mbissed for 0 at 8, 1f Ey T =8 and 3/ EeTIe..e0 =1

Choose J as the affine space of estimators that are locally unbiased
at eo = 0, As in Section 3, under appropriate regularity conditions,

we have for statistics T(Y) of finite variance

?
(6.3) = E, T‘e-o = EgS,T

90

where So is the score function for location. Normalizing .S0 to
give S = SO/EOSS ensures from (6.3) that S belongs to J, and
further that it is uncorrelated with T-S for T ¢ J. This yields
the variance decomposition (6.1).

An analogous treatment is possible to the (successively smaller)
affine spaces sk consisting of estimators locally unbiased up to
order k: i.e. in addition to the properties above, we require that

33 /309 By T=0 for j=2,....k.
0 )
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7. FURTHER APPLICATIONS

Stein effect and Bayesian robustness. Consider estimation of
8 = (8;,...,8,) using independent cbservations X; % N(S,, od)

isl,...,p, when loss in estimation of g by f(x) = (61(5),...,6p(x3)

is measured by [§(x) -8]% « 286, (0 - 0,)% and risk by R(P,8) =

Eelg(ga - le . It is often of interest to study the integrated risk

r(r,§) = [R(8,8)w(d8) of a rule § and the Bayes risk r(m) =
inf r(r,§) relative to a prior measure w(d8) . For example, Efron
and Morris (1972) and Berger (1982) have used r(r,§) and r(m,§) -
r(7) in studying the "relative savings risk" of Stein-type estimator
from empirical and robust Bayesian viewpoints respectively.

A fixed prior m(d@) determines, in conjuction with the sampling
model, 2 marginal measure [I(dx) and, under the quadratic loss function

2

L, an L® decomposition analogous to (5.1), namely

(7.1 28 = xm + [1600 - 8,017 T

where Ew(fJ = 5[2|§] is the Bayes rule minimizing r(w,f) . The
integral above is much easier to simulate (or evaluate numerically)
than r(m,8) = [R(8,8) dn(8) = ,ren.(g,g)lfl M(dx) . There is a further
saving if one compares several f 'for a fixed T (as done in Berger
(1982)), since r(T™) need only be evaluated once. Although analytic
expressions for R(E’f) are available for many of rules f of
interest in the Gaussian case, this special feature disappears for

other location densities, whereas the decomposition (6.1) persists.
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Multivariate Location

Let T(yl""’yn) be an be an unbiased, location equivariant

d

estimate of the location parameters 6 ¢ R based on n i.i.d. obser-

vations x; from a smooth demsity f(Z‘E) in Rd « In principle the
score function swindle extends directly, but we mention a couple of
interesting features, The score function 'statistic' is now a vector
with components Sl(‘o) = - 32.1 Dkf(yi)/f(yi) having mean 0 and
covariance matrix ts(o). Defining S = t;%o) $(9)  jeads to the matrix

decomposition

hredsr b

where t.r is the covariance matrix of T. Note therefore that covari-
ances of the components of T can be swindled in addition to the vari-
ances of the individual Ty -
efficiency properties of, for example, the computationally costly high-

Such a swindle could be used to study

breakdown, affine-equivariant estimates of multivariate location
proposed by Donoho (1982) and Stahel (1982). -

Discrete Parameter Sgccs

A discrete parameter version of the Cramer-Rao inequality (the
Hammers ley-Chapman-Robbins inequality) leads to a natural analog of
the score function swindle. Suppose that Y has density p(y,8) > 0
for yely and 8 €©. Fix eoee, 4 such that 90 +0e@®, Let

T = {T: Ey ,,\T-Ey T=cl. Then the decomposition (5.1) holds with
0

8+
S = ci/Ev? and ¥ = (p(x, 8,+8)/p(x,8)} -1 . This version of the

TP P O P U Y
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swindle can be of use, for example, in settings where the parameter 6
is restricted to lie in a lattice such as the integers, as in the

problem of estimation of molecular weight discussed by Hammersley (1950).

Bootstrap Estimates of Variance

To take a specific example, suppose that observations XiseoesXy
are taken i.i.d. fromdistribution F(x-0), and we wish to use a trans- 1
lation invariant estimate T(xl,...,xn) to estimate 8. In constrast ‘4@
with the simulation contexts considered earlier, it is not assumed here | 4
that F 1is known. Bootstrap estimates of Var FT(xl""’xn) are
obtained by replacing F by (some function of) its empirical distribu- ': ’:

tion function F_, say F; , and estimating Varpe T(xp,.000x) by
. n
drawing N i.i.d. samples form F; and then using the usuzl variance

estimator.

Consider the following modification of the score function proce-
dure to reduce the number N of "boots" required. Construct a density
estimate f from F_ (say by usingkernel methods) such that an -
empirical score function f;/f and estimated information f (f;/fn) zfndx | |
can be easily evaluated, Write F; for the cdf corresponding to
density £ . Now draw i.i.d. samples from P; and apply the location
score function swindle, thus estimating only VarF. T(l(-'e'(l() 1) . This
proposal is speculative at present: work is in progress to evaluate the

improvements obtained in particular situations. s
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8. DISCUSSION

8.A. gg!ggggson of (1.1) and (1.2)

Suppose that the control statistic S satisfies (1.1) and let us
compare the swindle gain from the variance decomposition (1.1) (given
in (2.1)) with the swindle gain from the "regression estimate’ (1.2) in
the overly-optimistic situation that b* = - Cov(5Z, §2)/Var(G) is
known. In this case, assuming as in §2.1 that ET = ES = 0 and that

35 and 3.“;. are given by naive method-of-moments estimators, we have

a2

Var(o,) 242 A2, ,-1 2.2 -1
—— = 11-0%@%, 3H17 = 112 0%, THIT
Vulé’r.r) §*°T

To render the calculations simple, suppose to a first order
approximation that T and S are jointly normal with the same variance

and with correlation n. Then p(Sz. ‘1'2) ] nz. and it is easily checked
from (2.1) that

Var(&.;) . 1 . 1. Var(&zi
Var@Zg (D% 1t var@l)

so that under these crude conditions the swindle gains from (1.1) are

better than those from (1.2) by a factor of S when n=.8 and by a factor

of 10 when n = ,9 .,

Suppose now that we wish to estimate Var T, - Var T, for Tl'T

1 2
satisfying (1.1) for the same S. Again for simplicity, assume that

2

-a owl o o N e ol y 2 . -k = s A e e . a— -




1'1.1'2 and S are jointly.Gaussian with means 0, the same variances, it

vanw
(]

and p(TI,S) = p(Tz,S) =-w, °(T1'Tz) = o, It follows that the optimal
. ~2 =2 A2 A2
b.'t'.l and b.;z above will be equal, and hence that 01.1 - o.rz = a.rl-a.rza

so that the regression swindle per se offers no improvement. However, -4

P aemae
it

since Tl and Tz are correlated

) a2 a2 2 2 2
t (8.1) NVar(on - 05 ) =052 ¢+ 027 = 20,2 »2 = 4(1-0")
T T T T, '
4 so that the precision of the difference is greater than that of each
fh individual term. (here N is the number of Monte-Carlo trials). Does
the variance decomposition swindle (1.1) help here? Easy normal theory

calculations show that

(8.2) N Var (5 N a{a(1-w)2-(1ep-20% .

2 - 32
(Tl-S) (TZ-S

Denoting w/p by «, then (8.2) is smaller than (8.1) exactly when
s p>1/2a . Thus, for example, if all of T,,T, and S are equally
correlated, the variance decomposition dominates the simple difference

? when that correlation exceeds 1/2.

8.B. Swindles for Variance Ratios

Sometimes we are primarily interested in estimating an efficiency

A e

Var T/Var S, where S has minimum variance amongst all estimators in

A 20 20e 40 k4
f AN

3. If Var S is known, then the improvement achieved by a variance

\‘0

F : decomposition swindle can be measured simply by comparing Var var(T-S)

‘-
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with Var Vir T as above. If Var S must also be estimated, then we . —Hj
can give a crude indication of the improvement attained as follows; We .;_'
goutinm to assume ES = ET = 0 and to use moment estimators for Var S,
Var T and Var(T-S) . Thus, using the generic labels s and t for .‘J
replications S(xx) and T(XI) for I =1,...,N, we seek to compare 1
the variances of
(8.3) § - i—:; , &y zs® ’;i‘”lz ,

-4
(the naive and swindled estimates respectively). Making the rather Hﬂ
crude assumption that the values of t-s (small compared to s) are
independent of s and symmetrically distributed about zero, one finds _’_‘
that I
]
(8.4) E(t?[(t-5)2 + s} = 52+ (2-9)?, ]
L

so that certainly Var():tz) 2 Var(tsz + t(t-s)z) . A more explicit
expression for the difference in variances of 31 and 32 follows by *
expanding t? as s’ 2s(t-s) + (t:-s)2 and conditioning on all -
"'I = SCXI) values, From ti\e independence and distributional assumptions 1
-
on t-s , we have E('éllsl....,sN) a E(Gzlsl,...,sN) , SO EE
-9
Var(8,) - Var(,) = E Va{g’iﬁﬁzsﬁ;fﬁf—! ;l -E Var(%l-‘fzf:;} \
= E -(2_5127 Var,[zzs(t-s)li] =g Var(t-s) E ﬁzo. : - 1
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I . A further point to note is that 6, 2 1, whereas it is certainly
possible for &, to be less than 1, in contradiction with the opti- 1

T T

mality of S .
Liad
8.C. Bhattacharya Bounds
The Cramer-Rao bound is the first of a sequence of lower bounds
. to the variance of an estimator that can be obtained by using succes- “ ‘
sively higher derivatives of the likelihood to build contrel functions.
In estimation of a single parameter 8 , these Bhattacharya bounds take
i the form (e.g. Lehmann, 1983, p. 129) -
o
(8.5) varg § 2a' <"l@) a = B_, V]
~ ~ P e
R

where 'Jl(j) = [fe()')]"1 aj/aej £5(Y), a' is a row matrix with entries

B SERAAATMOARAL \ DA TR
N

] - S
—3-3-56 6(!) - COV(S,w(J)) j=1l,...5p =

20 : -

and 1k, (0) = CovgW), vU)) . 1 6(N) 1s unbiased for 6 (at

least up to a constant), then the lower bound becomes [.c‘lce) ly o

(DRI

which by standard matrix theory is an increasing function of p . When "
the Bhattacharya bounds are strictly closer to the Pitman bound, they
i lead in principle to more effective swindles. In practice, the cases s 4
discussed below suggest that for pa3 or for moderate to large n -_T
(when the C-R bound becomes quite good anyway), the improvement is 1
! not very significant. ]
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]
i Consider the location problem, initially with p=2 , and =
-; fe(Y) - II:'I f(yi-e) . If 8§ is unbiased, then we easily calculate the
- percentage improvement in the lower bound from ;
.. 11 *22 2,,(1) ,(2),,-1
32/31-:-—..(1— s [1-p7(W*", ¥*°)] ]
- 11722712 . ]
a
In fact 32/31 is independent of 0 in the location problem, and if
6 =0, and o(yi) - - f‘/f(yi) , then
3 VW =2lorp v B = -z « o2
: Now if £ is symmetric about 0 , then £, 02 and ¢' are even func-
3 tions while ¢ is odd, so that Cov(¥D), ¥(?) = 0 . Thus the second- .
. order Bhattacharya bound offers no improvement.
Even when f is asymmetric, the gain decreases inversely with n.
I Indeed
z _ o
3 (8.6) 92(!0(1). Vl(z)) = -HM_T ’ ]
E¢"(En"+2(n-1) (E$7) "] ]
]
N "
where n = n(yl) = (¢2.¢')(y1) . For a specific example, let £(y) = 5 tj_:.:
¢y n(y) for y>0, and ¢y n(y/s) for y<O0, where n(y)-(Z«)"’ e-yz/z '. 3
l. and °c = (1+40)/2 . Then ' -;
: M, vy e 2 .
2 w[1+ng/(0-1) "]
. -
: ,_‘1
3
A
.5 -
" K
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In the symmetric location case one is forced to look at third .

order bounds, and it is easily shown that

By/B, = (1-0? W, (N1t and

2
2,.(1) . (3) E 67)
p (W W) = »
E02[22+0 (n-1) E “En 246 (n-1) (n-2) (E$ )~ ]

where I = ¢°° - 30¢° + ¢3 . If £ is Cauchy, then calculation shows
that

o2V, 4 « 2

n“+3n+S

Thus the improvement will typically be quite small: in this case, for

ns=S, 83/31 = 1,0465 for example.

o e

e
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TABLE 1

GAUSSIAN/INDEPENDENT (Z/W) DISTRIBUTIONS
(from Simon (1976))

N |
Distribution N Drawn Form ' j
. |
N(O, 02 W= 1/0° |
F t, NA sz(v)/“ y
(Cauchy = t,) Wa o]
1 with prob = p s ;
L} ] 11}
'‘Contaminated normal W= I/az with prob = 1-p .
"Slash" W~ Ufo,1]
e W) = v exp(-w"%/2)

(Double Exponential)
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TAMLE 3: SUIMDLE GAIM FACTORS FOR TWO VARLANCE DECOMPOSITION SWINDLES

Zopulacion Discribucion: ¢ on Indicated Degrees of Freedom .
. ] ‘ . ABSOLOTE
2 mriyr writr vt e et
0 1.8 1.9 106 3.4 a8y 1.9 3.3 1.6 20.8 13.0 -
ADEIGNT 20 6.4 1.8 475 3.3 1087 9.1 7.3 20.1 °©  35.8 15.8 10.3 -
@ 12,6 2.9 130 61 8.9 7.6 136.9 16.9 s8.4 221 1.9
1 1.2 1.4 2.4 2.3 28.9 6.9 235.8 17.8 747.9 427 -
mR 20 1.6 1.3 1.4 2.0 59.3 8.7 867.3 3.9 2081.3 49.8 3.6
@ 2.6 L6 112 3.0 1269 6.2 3129.7 25.8 2032.6 352.8 6.2
10 2.‘ 1., ’.z z.’ ﬂ-. ,-, 30.. 7.’ IS.O ’-‘ - -
MDIAN 20 8.0 1.8 162 2.6 26.6 6.0 20.2 10.1 13.5 81 1.8
W 1S 2.4 274 A4S 2.9 48 1.7 6.3 1.6 6.9 16.5
202 1 1.0 3.0 1.0 1.0 2.6 2.2 8.8 48 106 7.7 -
TDS®D 20 1.2 1.6 A4 3.1 176.2 8.8 18,2 22.8 .9 2000 2.2
s 0 A7 2.2 190 S.4 %071 8.3 8.2 18.1 147.8  27.8  19.7 “
102 19 1.0 0.4 2.6 2.2 REEEX' 4986 19.7 1390.6 38.6 — '
TRDORD 20 1.2 1.0 4 2.0 %.5 9.2 1966.1 39.3 138.2 0.7 2.8
A @ 1.9 1.5 105 3.0 2655 7.3 7066.0 24.7 2183.0 47.0 S.7
s‘ 10 1.0 3.0 1o° 1‘0 ‘.. 3.2 u-’ ”-’ u’.‘ 33.1 - .-
TRDB®D 20 1.0 1.0 3.6 1.3 2.7 1. 845.6 .36.0 77040 61.0 1.3 -
M 0 1.3 12 3.2 1.8 5.5 3.5 1368.7 23.7  13654.0 37.8 2.0 B
10 1.0 .0 1.0 1.0 89 3.2 2,9 10.6 W07.6 36.0 o~
: 0. 1.0 1.6 1.0 1.4 &3 29 9.6 ne “S.9 479 1.0 .
0 1.0 0.8 1.1 0.8 6.9 3.0 78.3 15.1 993.3 48.0 1.0
0 S 2.1 227 A2 U84 9.2 1256.7 19.7 18,884.6 45.6
PITAX 20 9.6 2.3 647 3.4  300.8 10.3 4942.6 40.7  19,607.6 60.6
0 S1.6 3.8 3204 6.7 2298.0 9.4  35594.6 26.4 136,546.6 358.0
* &, = Couchy n=10 2000 replications -

SCOR = Seore Funccics Sviadle

n = 20,40 1000 replications
N = Coussismeever-Indspendeat Svindle C.
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